
 1 of 11 REV: 080904

OVERVIEW
Applications originally destined for 16-bit or 32-bit microprocessors are making their way into the 8-bit
realm. With this move, new I/O capabilities are required, such as communicating using TCP/IP network
protocol over Ethernet. Because of the TCP/IP protocol stack complexity and multiple simultaneous
connection ability, a multiprocess OS is a necessity for efficient operation. IP packets require extensive
processing on transmit and receive to build headers and checksum data, and each connection requires a
unique state machine to be maintained. These requirements increase the CPU load on the micro, taking
away CPU resources from the critical application. Any reduction in protocol CPU use improves the
performance of the primary application.

Overall microprocessor system performance usually depends heavily on a few operations or function calls.
The DS80C400 contains several functional blocks that help the system designer speed up the code paths
that tend to be the bottleneck of system performance. This application note explores the features of the
DS80C400 in detail and provides usage examples.

Application Note 707
Using the DS80C400 to Maximize

System Performance
www.maxim-ic.com

AN707: Using the DS80C400 to Maximize System Performance

2 of 11

IMPROVED FEATURES
The DS80C400 is a step above its DS80C390 predecessor. It includes the features of the DS80C390 as well
as the features of the high-speed family of Dallas microcontrollers.

FEATURES HIGH-SPEED µC DS80C390 DS80C400

4-Clock Cycle Core � � �

Second Data Pointer � � �

Low-Power Modes � � �

Watchdog Timer � � �

Power-Fail Circuitry � � �

Additional Serial Port � � �

Math Accelerator � �

Automatic Increment Data
Pointer Select � �

1k Extended Stack � �

24-Bit Memory Addressing � �

3.3V/5V Tolerant I/O �

Max Frequency of 75MHz vs.
40MHz for DS80C390 �

Built-In Ethernet MAC �

Auto Increment/Decrement Data
Pointers �

Two Additional Data Pointers �

Optimized Single Increment/
Decrement Data Pointer �

Hardware TCP/IP Checksum
Generator �

Third Serial Port �

1-Wire® Master �

1-Wire is a registered trademark of Dallas Semiconductor Corp.

AN707: Using the DS80C400 to Maximize System Performance

3 of 11

Code Examples

Memory Copy/Stack Save
One of the most basic routines in microcontroller software development is the memory copy function.
Speeding up memory copies using the automatic increment data pointer is described In Application Note
604: Fast Memory Transfers with the Ultra-High-Speed Microcontroller. This functionality also applies to
stack save/restore on a multiprocessing OS to lower the latency of the context switch. Lower latency
increases responsiveness of the entire system and reduces the amount of CPU time spent in OS overhead.

In the unoptimized example below, the loop pops 1 byte off the stack, stores it to RAM, and increments the
data pointer. By using the auto increment instruction in the optimized example, the inc dptr can be
removed from the critical path, resulting in a speed improvement of 42%.

Stack save before optimization:

; dpl,dph points to location to save
stack
; Assume using internal 1K stack
 mov R0,SP
stack_loop:
 ; Get stack byte
 pop ACC
 ; Store stack byte
 movx @dptr,A
 inc dptr
 djnz R0,stack_loop

Machine cycles per loop, DS80C390: 10

Stack save after optimization:

; dpl,dph points to location to save
stack
; Assume using internal 1K stack
 mov R0,SP
 ; Enable auto increment data
pointer
 orl DPS,#010H
stack_loop:
 ; Get stack byte
 pop ACC
 ; Store stack byte
 movx @dptr,A
 djnz R0,stack_loop
 ; Disable auto increment data
pointer
 anl DPS,#0EFH

Machine cycles per loop, DS80C400: 7

42.8% speed improvement

Even without changing existing code to take advantage of the special data-pointer operations, system speed
can noticeably increase because the inc dptr instruction takes only one machine cycle on a DS80C400
instead of three on other Dallas high-speed microcontrollers. The simple, nonoptimized copy loop below is
over 30% faster running on a DS80C400 compared to a DS80C390, or any other 8051 derivative.

copy_loop:
 movx A,@dptr
 inc dptr
 inc dps
 movx @dptr,A
 inc dptr
 inc dps
 djnz R0,copy_loop

Machine cycles per loop, Dallas high-speed microcontroller: 17
Machine cycles per loop, DS80C400: 13
30.7% speed improvement

AN707: Using the DS80C400 to Maximize System Performance

 4 of 11

TCP/IP Checksum and Built-In MAC
The DS80C400 includes a built-in Ethernet MAC that simplifies network interfacing and removes the
requirement for an external memory-mapped Ethernet controller. The MAC is accessed through an 8kB
shared-memory interface that allows the use of the fast memory copies previously mentioned. Because the
memory is internal, no stretch cycles are necessary, and memory accesses execute at full speed, giving a
1.8MBps transfer rate to and from the Ethernet controller. If Ethernet is not used, this memory is available
for general-purpose use.

An additional network helper is the hardware TCP/IP checksum generator. All TCP/IP network headers and
data must be checksummed, a time-consuming process in software. By offloading the checksum to
hardware, the network throughput of the microprocessor increases drastically. The built-in checksum is
accessed through a single special function register (SFR).

In the unoptimized example, each 16-bit word is added to the running checksum, and any carry is folded
back into the result. The management of intermediate data and checking for carry consumes the majority of
the cycles in the loop. In the optimized version, the hardware handles all the details, and all that is required is
two writes to an SFR. Note: Auto-increment data-pointer functionality was left out of the optimized example
to highlight the checksum optimization. If auto increment is added, the loop is two machine cycles faster.

AN707: Using the DS80C400 to Maximize System Performance

 5 of 11

TCP/IP Checksum code before optimization:

;***********************************
;* Function Name: ip_checksum
;*
;* Description: Generate IP One’s
Complement Checksum.
;*
;* Input(s):
;* R4,R5 - Number of 16 bit words to
checksum
;* R0,R1 - running checksum
;* dpl,dph - data to checksum
;*
;* Outputs(s):
;* R0,R1 – running checksum
;***********************************
next_word:
 movx A,@dptr
; Read high byte of word.
 mov b, a
 inc dptr
 movx A,@dptr
; Read low byte of word.
 inc dptr
 add a, r0
; Add to low byte of sum.
 mov r0, a
 mov a, b
; Get high byte of word.
 addc a, r1
; Add it to high byte of sum.
 mov r1, a
 jnc ip_ics_no_carry

 mov a, r2
 addc a, #0
; Deal with carry.
 mov r2, a
 jnc ip_ics_no_carry

 mov a, r3
 addc a, #0
; Another possible carry.
 mov r3, a

ip_ics_no_carry:
 djnz r4, next_word
 djnz r5, next_word

Machine cycles per loop, DS80C390: 24–35

TCP/IP Checksum code after optimization:
;***********************************
;* Function Name: ip_checksum
;*
;* Description: Generate IP One’s
Complement Checksum.
;*
;* Input(s):
;* R4,R5 - Number of 16 bit words to
checksum
;* R0,R1 - running checksum
;* dpl,dph - data to checksum
;*
;* Outputs(s):
;* R0,R1 – running checksum
;***********************************
next_word:
 movx A,@dptr
; Read high byte of word.
 inc dptr
 mov OCAD,A
; Load One's Complement Adder
 movx A,@dptr
; Read low byte of word.
 inc dptr
 mov OCAD,A
; Load One's Complement Adder
 djnz r4, next_word
 djnz r5, next_word

Machine cycles per loop, DS80C400: 13

84.6% to 169.2% speed improvement

AN707: Using the DS80C400 to Maximize System Performance

 6 of 11

Additional Data Pointers
The DS80C400 provides two additional data pointers and an additional data-pointer select SFR, DPS1, for
ease of pointer management in large applications. This pair of data pointers has the same features as the
original pair and is selected using the SEL1 bit in DPS.

In the Xor_Strings example below, three pointers are necessary, two input and one output. Managing these
pointers requires saving an input pointer, restoring the output pointer, saving the output pointer, and finally
restoring the input pointer. The nonoptimized example requires that one of the two built in pointers be saved
on the stack, output pointer loaded in place of input pointer, output pointer incremented, output pointer
saved, and the original pointer restored from the stack. This time consuming operation must be performed on
each iteration of the loop. The optimized example uses dpl2 and dph2 to store the output pointer. No state
must be saved, and only one bit of state is modified in DPS to allow access to the new data pointer.

;***********************************
;* Function Name: Xor_Strings
;*
;* Description: XOR String A with
String B and place result in String C
; C = A XOR B
;*
;* Input(s):
; R0 – Number of bytes in
string
; dpl,dph – String A
; dpl1,dph1 – String B
; R4,R5 – String C
;*
;* Outputs(s):
;* None.
;***********************************
Xor_Strings:
 ; Get A
 movx A,@dptr
 mov B,A
 inc dptr
 inc dps
 ; Get B
 movx A,@dptr
 inc dptr
 inc dps
 xrl A,B
 push dpl
 push dph
 mov dpl,R4
 mov dph,R5
 ; Write C
 movx @dptr,A
 inc dptr
 mov R4,dpl
 mov R5,dph
 pop dph
 pop dpl
 djnz R0,Xor_Strings
 ret

Machine cycles per loop: 36

;***********************************
;* Function Name: Xor_Strings
;*
;* Description: XOR String A with
String B and place result in String C
; C = A XOR B
;*
;* Input(s):
; R0 – Number of bytes in
string
; dpl,dph – String A
; dpl1,dph1 – String B
; dpl2,dph2 – String C
;*
;* Outputs(s):
;* None.
;***********************************
Xor_Strings:
 ; Get A
 movx A,@dptr
 mov B,A
 inc dptr
 inc dps
 ; Get B
 movx A,@dptr
 inc dptr
 inc dps
 xrl A,B
 orl DPS,#008H
 ; Write C
 movx @dptr,A
 inc dptr
 anl DPS,#0F7H
 djnz R0,Xor_Strings
 ret

Machine cycles per loop: 24

33% speed improvement

AN707: Using the DS80C400 to Maximize System Performance

 7 of 11

1-Wire Master
Another unique addition is the 1-Wire Master. This hardware block takes the timing generation and state
machine management complexity out of 1-Wire interface software. The block is set to run off a divide of
the CPU clock, and is able to generate accurate 1-Wire time slots throughout the clock frequency range of
the DS80C400 (1MHz–75MHz). Using the 1-Wire master reduces CPU load, speeds 1-Wire
communication, simplifies software development, and reduces code size. In a pure software
implementation of a 1-Wire bit, care must be taken to turn off interrupts during the critical timing
portions of the 1-Wire timeslot. In the case of a read or write 0, this interrupt off time can be as long as
60µs. This translates to CPU dead time, where no useful code is executed, and no interrupts are allowed
to run. On the other hand, the hardware generation of 1-Wire bits is not timing critical, interrupts may
run, and CPU dead time is reclaimed for more important tasks.

The hardware generation of a 1-Wire bit involves enabling single bit mode, writing the data to transmit,
polling the transmit complete flag, and unloading the receive data. The code below demonstrates the
generation of a single 1-Wire bit. For comparison, see Appendix A for a non-hardware-based 1-Wire
master.

;**
;* Function Name: OWM_Bit
;*
;* Description: Generate a 1-wire bit and return the result.
;*
;* Input(s):
;* acc.0 -> transmit bit
;*
;* Outputs(s):
;* acc.0 -> receive bit
;**
OWM_Bit:
 mov OWMAD,#OWM_CONTROL ; Change to single bit mode
 orl OWMDR,#OWM_BIT_CTL_MASK ; "

 mov OWMAD,#OWM_TRANSMIT_BUFFER ; Send a single 1-Wire bit
 mov OWMDR,A ; "

 mov OWMAD,#OWM_INTERRUPT_FLAGS ; Look at the flags
OWM_Bit_wait:
 mov A,OWMDR ; Wait for end of bit command
 jnb OWM_RBF_BIT,OWM_Bit_wait ; "

 mov OWMAD,#OWM_RECEIVE_BUFFER ; Get the result of the single
bit
 mov A,OWMDR ; "

 mov OWMAD,#OWM_CONTROL ; Change to byte mode
 anl OWMDR,#NOT(OWM_BIT_CTL_MASK) ; "

 ret

AN707: Using the DS80C400 to Maximize System Performance

 8 of 11

Example Performance Results: TINI
An example of a software system that takes advantage of the DS80C400 features is the TINI® Runtime
Environment (TRE). The TRE is a platform developed to provide system designers with a flexible and
cost effective means to bridge the gap between hardware devices and networks. This system provides a
TCP/IPv4/6 network stack, I/O drivers, task scheduler, and a Java™ Virtual Machine to glue everything
together. The TRE runs on both the DS80C390 and DS80C400, with minor code modifications to take
advantage of the improved features of the DS80C400. The results of these optimizations improve network
speed and latency, context switch latency, memory mapped moves, 1-Wire CPU utilization, and Java
code execution speed. Table 1 shows typical performance numbers for the TRE on each microcontroller.

Table 1. Typical Performance Numbers for the TINI Runtime Environment

TINI RUNTIME
ENVIRONMENT

DS80C390
(36.864MHz)

DS80C400
(36.864MHz)

TCP Transmit (bytes/s) 133,000 266,240

TCP Receive (bytes/s) 117,000 252,900

UDP Transmit (bytes/s) 160,000 268,200

UDP Receive (bytes/s) 140,000 268,200

TCP Latency (ms) 7.2 6.2

Memory Copy Bandwidth (bytes/s) 655,000 1,875,000

TINI is a registered trademark of Dallas Semiconductor.
Java is a trademark of Sun Microsystems.

AN707: Using the DS80C400 to Maximize System Performance

 9 of 11

Figure 1. Selected Performance Results

Conclusion
The additional hardware performance enhancements and functionality of the DS80C400 can boost overall
system speed by more than 30%. Applications on existing 8-bit microprocessors can be moved to the
DS80C400 to free up CPU cycles, add new features, and avoid being forced to use a larger, more
expensive processor. Minor software modifications, as described in the examples above, allow existing
code to take advantage of the accelerated data pointer hardware support, giving any application added
speed.

With its low-power consumption, low-voltage core, standard 8051 memory interface, compatibility with
existing software tools, and on-board peripherals, the DS80C400 is an attractive target for existing and
new system development.

0
5
10
15
20
25
30
35
40

STACK SAVE INC DPTR TCP CHECKSUM XOR STRING

DS80C390
DS80C400

AN707: Using the DS80C400 to Maximize System Performance

 10 of 11

Appendix A: 1-Wire Bit Bang Example

Notes:
�� BURN_MS is a macro function call that burns 1µs of time at the clock rate of

the microprocessor.
�� P3.5 is used as the 1-Wire I/O line

;**
;* Function Name: OW2_Bit_Regular
;*
;* Description: Generate a 1-wire bit at regular speed
;*
;* Input(s):
;* acc.0 - transmit bit
;*
;* Outputs(s):
;* acc.0 - receive bit
;**
OW2_Bit_Regular:
 mov R1,A ; Save transmit bit.

 push IE
 clr EA
 clr P3.5 ; Start time slot.
 BURN_MS ; Wait 5µs.
 BURN_MS
 BURN_MS
 BURN_MS
 BURN_MS
 mov A,R1 ; Restore transmit bit.
 mov C,ACC.0
 mov P3.5,C
 BURN_MS ; Wait 10 more microseconds
 BURN_MS ; before sampling the bus.
 BURN_MS
 BURN_MS
 BURN_MS
 BURN_MS
 BURN_MS
 BURN_MS
 BURN_MS
 BURN_MS
 mov C,P3.5 ; Sample the bus as close to 15µs as possible.
 mov ACC.0,C
 mov R2,A ; Save receive bit.

 mov A,R1 ; Check to see if we're doing a write zero.
 jb ACC.0,OW2_Bit_finish_quick ; If we are not, we can shorten the

 ; time slot.

 mov R0, #10H ; Wait 48µs more for end of time slot.
OW2_Bit_finish:
 BURN_MS ; Wait out the time slot.
 BURN_MS
 BURN_MS
 djnz R0,OW2_Bit_finish

 setb P3.5 ; Restore 1-Wire to idle state.

AN707: Using the DS80C400 to Maximize System Performance

 11 of 11

 pop IE ; Restore interrupt state
 sjmp OW2_Bit_exit

OW2_Bit_finish_quick:
 pop IE ; We can enable interrupts here, as the

 ; one wire will be coming up on its own.

 mov A,R2
 jb ACC.0,OW2_Bit_finish_one

 mov R0,#080H ; Wait 48µs more for end of time slot,

 ; or onewire coming back high.
OW2_Bit_finish_quick_loop:
 BURN_MS ; Wait out the time slot.
 mov C,P3.5
 jc OW2_Bit_exit ; If the line comes high, exit.
 djnz R0,OW2_Bit_finish_quick_loop
 sjmp OW2_Bit_exit

OW2_Bit_finish_one:
 mov R0,#010H
OW2_Bit_finish_one_loop:
 BURN_MS ; Wait out the time slot.
 djnz R0, OW2_Bit_finish_one_loop

OW2_Bit_exit:
 BURN_MS ; Do 1us bus recovery.

 mov A,R2 ; Restore receive bit.

ret

